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It is shown that nonlinear localized modes in purely anharmonic lattices may be treated as com-
pactons, i.e., solitons with finite wavelength [see Ph. Rosenau and J. M. Hyman, Phys. Rev. Lett.
70, 564 (1993)]. An explicit analytical solution for a compacton with an internal frequency is found
for the chain of particles interacting via the quartic interatomic potential. It is demonstrated that
in two particular cases, when the compacton is centered at a particle site or between neighboring
particle sites, this solution gives ezact expressions for two intrinsic localized modes found earlier in
the framework of the rotating-wave approximation.

PACS number(s): 03.40.Kf, 63.20.Ry, 46.10.+z

As is well known, dynamical solitons appear in a result
of a balance between weak nonlinearity and dispersion.
However, when the wave dispersion is purely nonlinear,
some novel features in the nonlinear dynamics may be
observed and the most remarkable one is the existence
of the so-called compactons, i.e., solitons with a compact
support, which have been recently discovered by Rosenau
and Hyman [1] for a special class of the Korteweg—de
Vries (KdV) -type equations with nonlinear dispersion.
These traveling-wave solutions have a remarkable prop-
erty: Unlike the standard KdV soliton, which narrows as
the amplitude increases, the compacton’s width is inde-
pendent of the amplitude. Having a constant width, such
solutions cannot be obtained, however, in a result of a
proper continuum limit to discrete models (see, however,
a special case mentioned in Ref. [1]). Indeed, primary
physical models of solids are inherently discrete, with the
lattice spacing being a fundamental physical parameter.
Soliton-bearing equations may be derived from such dis-
crete models in a result of expansions in the wave ampli-
tude and inverse pulse width that normally need a scaling
procedure. In other words, the continuum limit approach
yields the condition of the slowly varying wave envelope,
which is consistent with the effect of weak nonlinearity
balanced by a weak dispersion. As soon as we deal with
compactons instead of standard solitons, the continuum
limit approximation cannot be properly justified because
higher-order derivatives will be only numerically small.

The purpose of the present paper is to introduce a dis-
crete compacton-bearing model that supports solutions
with a finite wavelength. Moreover, I show that intrin-
sic localized modes, which have been recently extensively
discussed for the case of one-dimensional lattices (see,
e.g., the pioneer works by Sievers and Takeno [2] and
Page [3]), may be treated as discrete compactons, show-
ing excellent agreement with approzimate solutions found
earlier [2, 3].

I consider a one-dimensional lattice in which each atom
interacts only with its nearest neighbors by purely an-
harmonic forces. If u,(t) is the dimensionless displace-
ment of the nth atom from its equilibrium position, and
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the atoms interact via quartic anharmonic potentials, the
equation of motion for the nth atom is given by

d?u,,
dt?
where dimensionless units have been used.
In the continuum limit, when the particle number is

treated as a continuous variable, long-wavelength excita-
tions of the nonlinear model (1) are described by

Vit — (v3):t:t + .- ) (2)

= [(tns1 — n)* + (tnes — un)°), (1)

where the indices stand for partial derivatives in t and
T = an, a being the lattice spacing assumed below to be
equal to 1, and the function v,, = u,41 — u, is treated as
slowly varying. For short-wavelength excitations the con-
tinuum limit approximation may be applied to the wave
envelope ¢, defined through the relation u, = (—1)"¢,,
so that the partial differential equation for ¢, takes the
form

b1z + 166° + 6¢(¢) oo + -~ = 0. 3)

Equations (2) and (3) have compacton properties similar
to those of the generalized KdV equation with the non-
linear dispersion introduced in [1]. However, these equa-
tions have higher-order dispersion terms omitted that
are in fact only numerically small for constant-width so-
lutions, so that they cannot be neglected (e.g., as was

. done in Ref. [4]). Therefore, discrete nonlinear chains

are rather natural models to look for compacton solutions
(i.e., those with finite wavelength), provided in the con-
tinuum limit such models are approximately described by
partial differential equations with purely nonlinear dis-
persion.

I look for standing oscillating solutions of Eq. (1) in
the form

un(t) = (—=1)" ¢ G(t), (4)
where the function ¢, is assumed to be independent of
time. Substituting Eq. (4) into Eq. (1), I reduce it to
the following equation:
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1 &G (¢n+1+80)° + (Pn-1+ 80)® The compacton (13) may be centered in the lattice at
T G3 der bn : () any position, because it is characterized by an arbitrary

It is clear that the left-hand side of Eq. (5) depends
only on time, whereas its right-hand side depends only
on the particle number n. This simply means that both
the parts are equal to the same constant value, giving
rise to the system of two decoupled equations

2G -
@ TOG* =0, (6)
(¢n+1 + ¢n)3 + (¢n—1 + ¢n)3 = C¢n7 ) (7)

C being a constant value. Equation (6) is easily inte-
grated and its periodic solution with amplitude A is de-
scribed by the result

G(t) = A cn(wt; k), (8)
where
1
ﬁa (9)

and cn(z; k) is the Jacobi elliptic function with the mod-
ulus k.

- To find a localized solution of Eq. (7), I use the funda-
mental idea proposed by Rosenau and Hyman [1], assum-
ing that such a localized solution may be taken as a part
(a half of the period) of a quasilinear periodic solution
with finite wavelength. In fact, the primary form of the
solution may be found with the help of Eq. (3) (which
has in fact properties similar to those in the equation an-
alyzed in [1]). Thus, I seek the solution of Eq. (7) in the
form

w=AVC and k=

when |g(n —no)| < g,

and ¢, = 0, otherwise. Substituting Eq. (10) into Eq.
(7), I find two relations,

¢n = cos[g(n — no)], (10)

2(q) 1 _r
tan (2) =3 le, ¢=g, (11)
and
27
C = = (12)

Therefore, the compacton solution of the lattice equation
(1) may be written as

wn(t) = (~1)" A cos [ T(n — )] en (wt; %) ;

when |n—mng| < 3, (13)

and u,(t) = 0, otherwise. If one takes the compacton’s
amplitude as an independent parameter, then the com-
pacton’s frequency w is defined through the relation [see
Egs. (9) and (12)]

w? = 277A2, (14)

which may be treated as the nonlinear dispersion rela-
tion.

parameter ng that defines a continuous shift of the com-
pacton’s center. If ny = 0, the compacton is centered
at the particle site n = 0, and the corresponding pat-
tern structure is shown in Fig. 1(a). As a result, being
extended only for three lattice spacings, the compacton
mode involves only three neighboring particles oscillating
with the opposite phases. At ng = 0 the solution (13)
may be rewritten in the form | !

1

Un(t) = A(...,0,—-3,1,—-%,0,...) cn (wt; ﬁ) ,  (15)
which clearly shows the mode pattern through the am-
plitudes of the oscillating particles. The other limit case
of the solution (13) is realized when the compacton is
centered just between the neighboring particle sites, i.e.,
at ng = % In this latter case only two neighboring parti-
cles oscillate, the other being at rest [see Fig. 1(b)]. The
mode pattern is given by the expression

Up (t) = \/TgA(...,O,l,—l,O....) cn (wt;%) , (16)

and to keep the total energy unchanged, mode (16) has
a renormalized amplitude (\/§A/ 2). In fact, the solu-
tion (13) describes an infinite family of different localized
modes, which are characterized by a certain value of ng
(0 <mo < 3).

As a matter of fact, the spatial structures similar to
those of the localized modes (15) and (16) have been
extensively discussed in connection with the so-called
intrinsic localized modes first predicted by Sievers and
Takeno [2] for the one-dimensional chain of particles in-
teracting via harmonic and quartic anharmonic inter-
atomic potentials. The model is described by [cf. Eq.

(W]

FIG. 1. The compacton pattern in two particular cases:
(a) the compacton centered at the particle site, and (b) the
compacton centered between the neighboring particle sites.
Shown is the function (—1)"¢,, where ¢, is defined by Egs.
(10) and (11).
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d?w,, the phenomenon of the so-called Peierls-Nabarro poten-
m -z = k2 (Wnt1 + wn—1 — 2wn) tial to the localized mode [7], an effective periodic poten-
ha[(Wntr — wn)® + (Wneq — wn)?]. (17) tial to the coordinate of the localized mode, which ap-

Looking for a solution to Eq. (17) in the so-called
“rotating-wave aproximation” when only a contribution
of the first harmonic is taken into account, Sievers and
Takeno [2] found the so-called s-like localized mode,

wn(t) = A(...,0,—21,1,—

> 3,0,...) cos(2t), (18)

which is in fact an approximate solution of Eq. (17) in the
limit (kgA2/k2) > 1, Q being the mode frequency lying
above the cutoff frequency Q2, = 4kz/m of the linear
spectrum band. The other type of the intrinsic localized
mode was introduced by Page [3]:

wp(t) = A(...,0,—1,1,0,...) cos(2t). (19)

I would like to note that in the case k4 A2 > k, the con-
tribution of the nonlinear interaction between particles in
the chain (17) becomes much more important than that
of a linear coupling term, so that the model (17) may be
treated as the model (1) for the function u, = w,/ks/m,
which is perturbed by small linear coupling. That is why
the approximate solutions (18) and (19) are somehow
close to the exact solutions (15) and (16), respectively. At
the same time, it should be pointed out that the rotating-
wave approximation cannot be properly justified because
the oscillation described by the elliptic function cn(wt; k)
at k = -1—2 is far from any harmonic oscillation. In spite

of this fact, one meets here the situation when the exact
solutions (15) and (16), having even a more complicated
temporal evolution, do reproduce qualitatively well the
spatial structure of the localized modes found with the
help of the rotating-wave approximation.

It is relevant to mention briefly one more peculiarity of
the localized modes in the model (17) in comparison with
the compacton solution (13) for the purely anharmonic
lattice (1). As has been recently demonstrated by San-
dusky, Page, and Schmidt [5], the mode (18) may show a
dynamical instability in the framework of the model (17),
whereas the mode (19) seems to be absolutely stable. A
recent explanation [6] of this instability effect is based on

pears to be due to the model discreteness. The existence
of the exact compacton solution (13) with an arbitrary
no clearly indicates that this Peierls-Nabarro potential
is absent for the compactons, and they may, therefore,
move freely in the lattice, provided the interatomic cou-
pling is purely anharmonic. It seems that this is the first
example where the Peierls-Nabarro barrier may appear
to be due to a linear interparticle coupling, which itself
does not destroy the integrability of discrete linear mod-
els.

In conclusion, it has been demonstrated that a chain
of particles interacting via purely anharmonic forces is a
natural model to support discrete compactons, i.e., soli-
tons with finite wavelength. Such a compacton solution
has been found for the chain of particles with quartic in-
teratomic potentials, and it has been pointed out that
this solution may be naturally used to explain the phe-
nomenon of the intrinsic localized modes [2, 3]. In partic-
ular, I have shown that the general compacton solution
reproduces excellently two localized mode patterns found
earlier in the framework of the rotating-wave approxima-
tion. Namely, when the compacton (13) is centered at the
particle site, it gives the so-called s-mode pattern found
by Sievers and Takeno [2]. In the other case, when the
compacton (13) is centered between the nearest particle
sites, it gives the pattern of the p mode introduced by
Page [3].

In conclusion, I would like to point out that the ideas of
the discrete compactons formulated in the present paper
are rather general to be applied to other strongly nonlin-
ear models of solids. However, the model (1) itself may
support also other types of compacton solutions, such
as pulse compactons, kinklike compactons, and moving
breather compactons, and the properties of such com-
pactons as well as their stability and collisions are still
to be analyzed in detail.
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